Теплопроводность строительных материалов: таблица параметров

Таблица теплопроводности строительных материалов – изучаем важные показатели

Строительство каждого объекта лучше начинать с планировки проекта и тщательного расчета теплотехнических параметров. Точные данные позволит получить таблица теплопроводности строительных материалов. Правильное возведение зданий способствует оптимальным климатическим параметрам в помещении. А таблица поможет правильно подобрать сырье, которое будут использоваться для строительства.

Теплопроводность материалов влияет на толщину стен

Назначение теплопроводности

Теплопроводность является показателем передачи тепловой энергии от нагреваемых предметов в помещении к предметам с более низкой температурой. Процесс теплообмена производится, пока температурные показатели не уравняются. Для обозначения тепловой энергии используется специальный коэффициент теплопроводности строительных материалов. Таблица поможет увидеть все требуемые значения. Параметр обозначает, сколько тепловой энергии пропускается через единицу площади в единицу времени. Чем больше данное обозначение, тем качественнее будет теплообмен. При возведении зданий необходимо применять материал с минимальным значением тепловой проводимости.

На схеме представлены показатели различных вариантов

Коэффициент теплопроводности это такая величина, которая равна количеству теплоты, проходящей через метр толщины материала за час. Использование подобной характеристики обязательно для создания лучшей теплоизоляции. Теплопроводность следует учесть при подборе дополнительных утепляющих конструкций.

Сравнение характеристик разных типов сырья

Что оказывает влияние на показатель теплопроводности?

Теплопроводность определяется такими факторами:

  • пористость определяет неоднородность структуры. При пропуске тепла через такие материалы процесс охлаждения незначительный;
  • повышенное значение плотности влияет на тесные соприкосновения частиц, что способствует более быстрому теплообмену;
  • повышенная влажность увеличивает данный показатель.

Характеристики различных материалов

Использование значений коэффициента теплопроводности на практике

Материалы представлены конструкционными и теплоизоляционными разновидностями. Первый вид обладает большими показателями теплопроводности. Они применяются для строительства перекрытий, ограждений и стен.

При помощи таблицы определяются возможности их теплообмена. Чтобы данный показатель был достаточно низким для нормального микроклимата в помещении стены из некоторых материалов должны быть особенно толстыми. Чтобы этого избежать, рекомендуется использовать дополнительные теплоизолирующие компоненты.

Показатели теплопроводности для готовых построек. Виды утеплений

При создании проекта нужно учитывать все способы утечки тепла. Оно может выходить через стены и крышу, а также через полы и двери. Если вы неправильно проведете расчеты проектирования, то придется довольствоваться только тепловой энергией, полученной от отопительных приборов. Здания, построенные из стандартного сырья: камня, кирпича либо бетона нужно дополнительно утеплять.

Монтаж минеральной ваты

Дополнительная теплоизоляция проводится в каркасных зданиях. При этом деревянный каркас придает жесткости конструкции, а утепляющий материал прокладывается в пространство между стойками. В зданиях из кирпича и шлакоблоков утепление производится снаружи конструкции.

Выбирая утеплители необходимо обращать внимание на такие факторы, как уровень влажности, влияние повышенных температур и типа сооружения. Учитывайте определенные параметры утепляющих конструкций:

  • показатель теплопроводности оказывает влияние на качество теплоизолирующего процесса;
  • влагопоглощение имеет большое значение при утеплении наружных элементов;
  • толщина влияет на надежность утепления. Тонкий утеплитель помогает сохранить полезную площадь помещения;
  • важна горючесть. Качественное сырье имеет способность к самозатуханию;
  • термоустойчивость отображает способность выдерживать температурные перепады;
  • экологичность и безопасность;
  • звукоизоляция защищает от шума.

Характеристики разных видов утеплителей

В качестве утеплителей применяются следующие виды:

  • минеральная вата устойчива к огню и экологична. К важным характеристикам относится низкая теплопроводность;

Данный материал относится к самым доступным и простым вариантам

  • пенопласт – это легкий материал с хорошими утеплительными свойствами. Он легко устанавливается и обладает влагоустойчивостью. Рекомендуется для применения в нежилых строениях;
  • базальтовая вата в отличие от минеральной отличается лучшими показателями стойкости к влаге;
  • пеноплэкс устойчив к влажности, повышенным температурам и огню. Имеет прекрасные показатели теплопроводности, прост в монтаже и долговечен;

Для пеноплекса характерна пористая структура

  • пенополиуретан известен такими качествами, как негорючесть, хорошие водоотталкивающие свойства и высокая пожаростойкость;
  • экструдированный пенополистирол при производстве проходит дополнительную обработку. Обладает равномерной структурой;

Данный вариант бывает разной толщины

  • пенофол представляет из себя многослойный утепляющий пласт. В составе присутствует вспененный полиэтилен. Поверхность пластины покрывается фольгой для обеспечения отражения.

Для теплоизоляции могут применяться сыпучие типы сырья. Это бумажные гранулы или перлит. Они имеют стойкость к влаге и к огню. А из органических разновидностей можно рассмотреть волокно из древесины, лен или пробковое покрытие. При выборе, особое внимание уделяйте таким показателям как экологичность и пожаробезопасность.

Обратите внимание! При конструировании теплоизоляции, важно продумать монтаж гидроизолирующей прослойки. Это позволит избежать высокой влажности и повысит сопротивляемость теплообмену.

Таблица теплопроводности строительных материалов: особенности показателей

Таблица теплопроводности строительных материалов содержит показатели различных видов сырья, которое применяется в строительстве. Используя данную информацию, вы можете легко посчитать толщину стен и количество утеплителя.

Утепление производится в определенных местах

Как использовать таблицу теплопроводности материалов и утеплителей?

В таблице сопротивления теплопередаче материалов представлены наиболее популярные материалы. Выбирая определенный вариант теплоизоляции важно учитывать не только физические свойства, но и такие характеристики как долговечность, цена и легкость установки.

Знаете ли вы, что проще всего выполнять монтаж пенооизола и пенополиуретана. Они распределяются по поверхности в виде пены. Подобные материалы легко заполняют полости конструкций. При сравнении твердых и пенных вариантов, нужно выделить , что пена не образует стыков.

Коэффициент разнообразных типов сырья

Значения коэффициентов теплопередачи материалов в таблице

При произведении вычислений следует знать коэффициент сопротивления теплопередаче. Данное значение является отношением температур с обеих сторон к количеству теплового потока. Для того чтобы найти теплосопротивление определенных стен и используется таблица теплопроводности.

Значения плотности и теплопроводности

Все расчеты вы можете провести сами. Для этого толщина прослойки теплоизолятора делится на коэффициент теплопроводности. Данное значение часто указывается на упаковке, если это изоляция. Материалы для дома измеряются самостоятельно. Это касается толщины, а коэффициенты можно отыскать в специальных таблицах.

Теплопроводность некоторых конструкций

Коэффициент сопротивления помогает выбрать определенный тип теплоизоляции и толщину слоя материала. Сведения о паропроницаемости и плотности можно посмотреть в таблице.

При правильном использовании табличных данных вы сможете выбрать качественный материал для создания благоприятного микроклимата в помещении.

Теплопроводность строительных материалов (видео)


Таблица теплопроводности строительных материалов: коэффициенты

Любое строительство независимо от его размера всегда начинается с разработки проекта. Его цель – спроектировать не только внешний вид будущего строения, еще и просчитать основные теплотехнические характеристики. Ведь основной задачей строительства считается сооружение прочных, долговечных зданий, способных поддерживать здоровый и комфортный микроклимат, без лишних затрат на отопление. Несомненную помощь при выборе сырья, используемого для возведения постройки, окажет таблица теплопроводности строительных материалов: коэффициенты.

Тепло в доме напярямую зависит от коэффициента теплопроводности строительных материалов

Что такое теплопроводность?

Теплопроводность – это процесс передачи энергии тепла от нагретых частей помещения к менее теплым. Такой обмен энергией будет происходить, пока температура не уравновесится. Применяя это правило к ограждающим системам дома, можно понять, что процесс теплопередачи определяется промежутком времени, за который происходит выравнивание температуры в комнатах с окружающей средой. Чем это время больше, тем теплопроводность материала, применяемого при строительстве, ниже.

Отсутствие теплоизоляции дома скажется на температуре воздуха внутри помещения

Для характеристики проводимости тепла материалами используют такое понятие, как коэффициент теплопроводности. Он показывает, какое количество тепла за одну единицу временного промежутка пройдет через одну единицу площади поверхности. Чем выше подобный показатель, тем сильнее теплообмен, значит, постройка будет остывать значительно быстрее. То есть при сооружении зданий, домов и прочих помещений необходимо использовать материалы, проводимость тепла которых минимальна.

Сравнительные характеристики теплопроводности и термического сопротивления стен, возведенных из кирпича и газобетонных блоков

Что влияет на величину теплопроводности?

Тепловая проводимость любого материала зависит от множества параметров:

  1. Пористая структура. Присутствие пор предполагает неоднородность сырья. При прохождении тепла через подобные структуры, где большая часть объема занята порами, охлаждение будет минимальным.
  2. Плотность. Высокая плотность способствует более тесному взаимодействию частиц друг с другом. В результате теплообмен и последующее полное уравновешивание температур происходит быстрее.
  3. Влажность. При высокой влажности окружающего воздуха или намокании стен постройки, сухой воздух вытесняется капельками жидкости из пор. Теплопроводность в подобном случае значительно увеличивается.

Теплопроводность, плотность и водопоглощение некоторых строительных материалов

Применение показателя теплопроводности на практике

В строительстве все материалы условно подразделяются на теплоизоляционные и конструкционные. Конструкционное сырье отличается наибольшими показателями теплопроводности, но именно его применяют для постройки стен, перекрытий, прочих ограждений. Согласно таблице теплопроводности строительных материалов, при возведении стен из железобетона, для низкого теплообмена с окружающей средой толщина конструкции должна быть около 6 метров. В таком случае строение получится огромным, громоздким и потребует немалых затрат.

Наглядный пример — при какой толщине различных материалов их коэффициент теплопроводности будет одинаковым

Поэтому при возведении постройки следует отдельное внимание уделять дополнительным теплоизолирующим материалам. Слой теплоизоляции может не понадобиться только для построек из дерева или пенобетона, но даже при использовании подобного низкопроводного сырья толщина конструкции должна быть не менее 50 см.

Нужно знать! У теплоизоляционных материалов значения показателя теплопроводности минимальны.

Теплопроводность готового здания. Варианты утепления конструкций

При разработке проекта постройки необходимо учесть все возможные варианты и пути потери тепла. Большое его количество может уходить через:

  • стены – 30%;
  • крышу – 30%;
  • двери и окна – 20%;
  • полы – 10%.

Теплопотери неутепленного частного дома

При неверном расчете теплопроводности на этапе проектирования, жильцам остается довольствоваться только 10% тепла, получаемого от энергоносителей. Именно поэтому дома, возведенные из стандартного сырья: кирпича, бетона, камня рекомендуют дополнительно утеплять. Идеальная постройка согласно таблице теплопроводности строительных материалов должна быть выполнена полностью из теплоизолирующих элементов. Однако малая прочность и минимальная устойчивость к нагрузкам ограничивает возможности их применения.

Нужно знать! При обустройстве правильной гидроизоляции любого утеплителя высокая влажность не повлияет на качество теплоизоляции и сопротивление постройки теплообмену будет значительно выше.

Сравнительный график коэффициентов теплопроводности некоторых строительных материалов и утеплителей

Самым распространенным вариантом сочетание несущей конструкции из высокопрочных материалов с дополнительным слоем теплоизоляции. Сюда можно отнести:

  1. Каркасный дом. При его постройке каркасом из древесины обеспечивается жесткость всей конструкции, а укладка утеплителя производится в пространство между стойками. При незначительном уменьшении теплообмена в некоторых случая может потребоваться утепление еще и снаружи основного каркаса.
  2. Дом из стандартных материалов. При выполнении стен из кирпича, шлакоблоков, утепление должно проводиться по наружной поверхности конструкции.

Необходимая тепло- и гидроизоляция для сохранения тепла в частном доме

Таблица теплопроводности строительных материалов: коэффициенты

В этой таблице собраны показатели теплопроводности самых распространенных строительных материалов. Пользуясь подобными справочниками, можно без проблем рассчитать необходимую толщину стен и применяемого утеплителя.

Таблица коэффициента теплопроводности строительных материалов:

Таблица теплопроводности строительных материалов: коэффициенты

Читайте также:  Технология нанесения штукатурки «короед»: фото и видео материалы

Теплопроводность строительных материалов (видео)

Просто о сложном: сравнительная таблица теплопроводности строительных материалов

Комфорт и уют в доме во многом зависят от грамотно рассчитанного теплообмена ещё на этапе строительства. Для этого учитывают всё. Чтобы расчёты были более точными, а сделать их было гораздо легче, применяется таблица теплопроводности строительных материалов. С её помощью можно рассчитать, насколько тепло будет в доме и насколько экономнее получится его отопление. Рассмотрим основные параметры теплопроводности различных материалов и методику вычисления подобной величины общей конструкции.

Что такое теплопроводность, термическое сопротивление и коэффициент теплопроводности

Что же за «зверь» − теплопроводность? Если «расшифровать» сложное физическое определение, то можно получить следующее пояснение. Теплопроводность – свойство, которым обладают все строительные материалы. Характеризуется способностью отдавать тепло от нагретого предмета более холодному. Чем быстрее и интенсивнее это происходит, тем холоднее сам материал, соответственно, и строение из него нуждается в более интенсивном обогреве. Что не очень эффективно, особенно в денежном плане.

Для оценки величины теплопроводности используются специальные коэффициенты, которые уже заранее выявлены. ГОСТ 30290-94 контролирует методы определения подобной характеристики. Последняя нераздельно связана с термическим сопротивлением, которое означает сопротивление слоя теплоотдачи. В случае многослойного материала оно рассчитывается как сумма термических сопротивлений отдельных слоёв. Сама же эта величина равна отношению толщины слоя к коэффициенту.

Внимание! Для упрощённого расчёта теплосопротивления стены в сети можно найти калькулятор с доступным и понятным интерфейсом.

Как видите, в определении теплопроводности нет ничего сложного и непонятного. Зная все подобные характеристики будущих материалов, можно составить «энергоэффективный бутерброд», но только при условии учёта всех обстоятельств, которые будут влиять на теплоэффективность каждого слоя конструкции.

Основные параметры, от которых зависит величина теплопроводности

Не все строительные материалы одинаково теплоэффективны. На это влияют следующие факторы:

    Пористая структура материала говорит о том, что подобное строение неоднородно, а поры наполнены воздухом. Тепловые массы, перемещаясь через такие прослойки, теряют минимум своей энергии. Поэтому пенобетон именно с замкнутыми порами считается хорошим теплоизолятором.

Замкнутые поры пенобетона наполнены воздухом, который по праву считается лучшим теплоизолятором

Повышенная плотность материала гарантирует более тесную взаимосвязь частиц друг с другом. Соответственно, уравновешивание температурного баланса происходит намного быстрее. По этой причине плотный материал обладает большим коэффициентом проводимости тепла. Поэтому железобетон считается одним из самых «холодных» материалов.

Высокая плотность даёт хорошую прочность железобетону, но также и «обделяет» его теплоэффективностью

  • Влажность – злокачественный фактор, повышающий скорость прохождения тепла. Поэтому так важно качественно произвести гидроизоляцию необходимых узлов здания, грамотно организовать вентиляцию и использовать максимально инертные к намоканию строительные материалы.
  • Зная, что такое проводимость тепла, и какие факторы на неё влияют, можно смело пробовать применять свои знания для расчётов будущих строительных конструкций. Для этого нужно знать коэффициенты используемых материалов.

    Коэффициент теплопроводности строительных материалов – таблицы

    Теплоизоляционные свойства материалов прекрасно демонстрируют сводные таблицы, в которых представлены нормативные показатели.

    Таблица коэффициентов теплоотдачи материалов. Часть 1

    Но эти таблицы теплопроводности материалов и утеплителей учли далеко не все значения. Рассмотрим подробнее теплоотдачу основных строительных материалов.

    Таблица теплопроводности кирпича

    Как уже успели убедиться, кирпич – не самый «тёплый» стеновой материал. По теплоэффективности он отстаёт от дерева, пенобетона и керамзита. Но при грамотном утеплении из него получаются уютные и тёплые дома.

    Но не все виды кирпича имеют одинаковый коэффициент теплопроводности (λ). Например, у клинкерного он самый большой – 0,4−0,9 Вт/(м·К). Поэтому строить из него что-то нецелесообразно. Чаще всего его применяют при дорожных работах и укладке пола в технических зданиях. Самый малый коэффициент подобной характеристики у так называемой теплокерамики – всего 0,11 Вт/(м·К). Но подобное изделие также отличается и большой хрупкостью, что максимально минимизирует область его применения.

    Неплохое соответствие прочности и теплоэффективности у силикатных кирпичей. Но кладка из них также нуждается в дополнительном утеплении, и в зависимости от региона строительства, возможно, ещё и в утолщении стены. Ниже приведена сравнительная таблица значений проводимости тепла различными видами кирпичей.

    Теплопроводность разных видов кирпичей

    Таблица теплопроводности металлов

    Теплопроводность металлов не менее важна в строительстве, например, при выборе радиаторов отопления. Также без подобных значений не обойтись при сварке ответственных конструкций, производстве полупроводников и различных изоляторов. Ниже приведены сравнительные таблицы проводимости тепла различных металлов.

    Теплоэффективность разных видов металлов. Часть 1 Теплоэффективность разных видов металлов. Часть 2 Теплоэффективность разных видов металлов. Часть 3

    Таблица теплопроводности дерева

    Древесина в строительстве негласно относится к элитным материалам для возведения домов. И это не только из-за экологичности и высокой стоимости. Самые низкие коэффициенты теплопроводности у дерева. При этом подобные значения напрямую зависят от породы. Самый низкий коэффициент среди строительных пород имеет кедр (всего 0,095 Вт/(м∙С)) и пробка. Из последней строить дома очень дорого и проблемно. Но зато пробка для покрытия пола ценится из-за своей невысокой проводимости тепла и хороших звукоизоляционных качеств. Ниже представлены таблицы теплопроводности и прочности различных пород.

    Проводимость тепла дерева Прочность разных пород древесины

    Таблица проводимости тепла бетонов

    Бетон в различных его вариациях является самым распространённым строительным материалом на сегодня, хотя и не является самым «тёплым». В строительстве различают конструкционные и теплоизоляционные бетоны. Из первых возводят фундаменты и ответственные узлы зданий с последующим утеплением, из вторых строят стены. В зависимости от региона к таковым либо применяется дополнительное утепление, либо нет.

    Сравнительная таблица теплоизоляционных бетонов и теплопроводности различных стеновых материалов

    Наиболее «тёплым» и прочным считает газобетон. Хотя это не совсем так. Если сравнивать структуру пеноблоков и газобетона, можно увидеть существенные различия. У первых поры замкнутые, когда же у газосиликатов большинство их открытые, как бы «рваные». Именно поэтому в ветреную погоду неутеплённый дом из газоблоков очень холодный. Эта же причина делает подобный лёгкий бетон более подверженным к воздействиям влаги.

    Какой коэффициент теплопроводности у воздушной прослойки

    В строительстве зачастую используют воздушные ветронепродуваемые прослойки, которые только увеличивают проводимость тепла всего здания. Также подобные продухи необходимы для вывода влаги наружу. Особое внимание проектированию подобных прослоек уделяется в пенобетонных зданиях различного назначения. У подобных прослоек также есть свой коэффициент теплопроводности в зависимости от их толщины.

    Таблица проводимости тепла воздушных прослоек

    Калькулятор расчёта толщины стены по теплопроводности

    На практике подобные данные применяют часто и не только профессиональными проектировщиками. Нет ни одного закона, запрещающего самостоятельно создавать проект своего будущего дома. Главное, чтобы тот соответствовал всем нормативам и СНиПам. Чтобы рассчитать теплопроводность стены, можно воспользоваться специальным калькулятором. Подобное «чудо прогресса» можно как установить к себе на компьютер в качестве приложения, так и воспользоваться услугой онлайн.

    Окно расчёта калькулятора

    В нём нет премудростей. Просто выбираешь необходимые данные и получаешь готовый результат.

    Расчёт толщины стен с использованием глиняного обыкновенного кирпича на цементно-песчаном растворе

    Существуют и более сложные калькуляторы расчёта, где учитываются все слои стен, пример подобного расчётного «механизма» показан на фото ниже.

    Расчёт проводимости тепла всех прослоек стен

    Конечно, теплоэффективность будущего здания – это вопрос, требующий пристального внимания. Ведь от него зависит, насколько тепло будет в доме и насколько экономно будет его отапливать. Для каждого климатического региона существуют свои нормы коэффициентов теплопроводности ограждающих конструкций. Можно рассчитать самостоятельно теплоэффективность, но если возникают проблемы, лучше обратиться за помощью к специалистам.

    Теплопроводность утеплителей — сравнительная таблица

    В привычной для населения страны холодной зиме, востребованность теплоизоляционных материалов всегда на высоком уровне. Необходимо учитывать все особенности каждого из утеплителей, чтобы сделать выбор в пользу качественного и целесообразного материала.

    Зачем нужна теплоизоляция?

    Актуальность теплоизоляции заключается в следующем:

    • Сохранение тепла в зимний период и прохлады в летний период.

    Потери тепла сквозь стены обычного многоэтажного жилого дома составляют 30-40%. Для снижения теплопотерь нужны специальные теплоизоляционные материалы. Применение в зимний период электрических обогревателей способствует дополнительному расходу на электроэнергию. Эти расходы выгодней компенсировать использованием качественного теплоизоляционного материала, обеспечивающего сохранение тепла в зимний период и прохладу в летнюю жару. При этом затраты на охлаждение помещения кондиционером также будут сведены к минимуму.

    • Увеличение долговечности конструкций здания.

    В случае промышленных зданий с использованием металлического каркаса, утеплитель позволяет защитить поверхность металла от коррозии, являющейся самым пагубным дефектом для данного вида конструкций. А срок службы для здания из кирпича определяется количеством циклов замораживания/оттаивания. Воздействие этих циклов воспринимает утеплитель, ведь точка росы при этом находится в теплоизоляционном материале, а не материале стены. Такое утепление позволяет увеличить срок службы здания во много раз.

    Защита от возрастающего уровня шума достигается при использовании таких шумопоглощающих материалов (толстые матрасы, звукоотражающие стеновые панели).

    • Увеличение полезной площади зданий.

    Использование системы теплоизоляции позволяет уменьшить толщину наружных стен, при этом увеличивая внутреннюю площадь здания.

    Как правильно выбрать утеплитель?

    При выборе утеплителя нужно обращать внимание на: ценовую доступность, сферу применения, мнение экспертов и технические характеристики, являющиеся самым важным критерием.

    Основные требования, предъявляемые к теплоизоляционным материалам:

    • Теплопроводность.

    Теплопроводность подразумевает под собой способность материала передавать теплоту. Это свойство характеризуется коэффициентом теплопроводности, на основе которого принимают необходимую толщину утеплителя. Теплоизоляционный материал с низким коэффициентом теплопроводности является лучшим выбором.

    Также теплопроводность тесно связана с понятиями плотности и толщины утеплителя, поэтому при выборе необходимо обращать внимание и на эти факторы. Теплопроводность одного и того же материала может изменяться в зависимости от плотности.

    Под плотностью понимают массу одного кубического метра теплоизоляционного материала. По плотности материалы подразделяются на: особо лёгкие, лёгкие, средние, плотные (жёсткие). К легким относятся пористые материалы, подходящие для утепления стен, перегородок, перекрытий. Плотные утеплители лучше подходят для утепления снаружи.

    Чем меньше плотность утеплителя, тем меньше вес, а теплопроводность выше. Это является показателем качества утепления. А небольшой вес способствует удобству монтажа и укладки. В ходе опытных исследований установлено, что утеплитель, имеющий плотность от 8 до 35 кг/м³ лучше всего удерживает тепло и подходят для утепления вертикальных конструкций внутри помещений.

    А как зависит теплопроводность от толщины? Существует ошибочное мнение, что утеплитель большой толщины будет лучше удерживать тепло внутри помещения. Это приводит к неоправданным расходам. Слишком большая толщина утеплителя может привести к нарушению естественной вентиляции и в помещении будет слишком душно.

    А недостаточная толщина утеплителя приводит к тому, что холод будет проникать через толщу стены и на плоскости стены образуется конденсат, стена будет неотвратимо отсыревать, появится плесень и грибок.

    Читайте также:  Геотекстиль: что это такое и как используется в различных сферах?

    В случае игнорирования расчета может появиться ряд проблем, решение которых потребует больших дополнительных затрат!

    Таблица теплопроводности материалов

    МатериалТеплопроводность материалов, Вт/м*⸰СПлотность, кг/м³
    Пенополиуретан0,02030
    0,02940
    0,03560
    0,04180
    Пенополистирол0,03710-11
    0,03515-16
    0,03716-17
    0,03325-27
    0,04135-37
    Пенополистирол (экструдированный)0,028-0,03428-45
    Базальтовая вата0,03930-35
    0,03634-38
    0,03538-45
    0,03540-50
    0,03680-90
    0,038145
    0,038120-190
    Эковата0,03235
    0,03850
    0,0465
    0,04170
    Изолон0,03133
    0,03350
    0,03666
    0,039100
    Пенофол0,037-0,05145
    0,038-0,05254
    0,038-0,05274
    • Экологичность.

    Этот фактор является значимым, особенно в случае утепления жилого дома, так как многие материалы выделяют формальдегид, что влияет на рост раковых опухолей. Поэтому необходимо делать выбор в сторону нетоксичных и биологически нейтральных материалов. С точки зрения экологичности лучшим теплоизоляционным материалом считается каменная вата.

    • Пожарная безопасность.

    Материал должен быть негорючим и безопасным. Гореть может любой материал, разница состоит в том, при каком температуре он возгорается. Важным является то, чтобы утеплитель был самозатухающим.

    • Паро- и водонепроницаемость.

    Преимущество имеют те материалы, которые обладают водонепроницаемостью, так как впитывание влаги приводит к тому, что эффективность материала становится низкой и полезные характеристики утеплителя через год использования снижаются на 50% и более.

    В среднем срок службы изоляционных материалов составляет от 5 до 10-15 лет. Теплоизоляционные материалы, имеющие в составе вату в первые годы службы значительно снижают свою эффективность. Зато пенополиуретан обладает сроком службы свыше 50 лет.

    Достоинства и недостатки утеплителей

    1. Пенополиуретан на сегодняшний день самый эффективный утеплитель.

    Виды ППУ

    Достоинства: бесшовный монтаж пеной, долговечность, лучшая тепло- и гидроизоляция.

    Недостатки: дороговизна материала, неустойчивость к УФ-излучению.

    1. Пенополистирол (пенопласт) – востребован для использования в качестве утеплителя для помещений разных типов.

    Достоинства: низкая теплопроводность, невысокая стоимость, удобство монтажа, водонепроницаемость.

    Недостатки: хрупкость, легкая воспламеняемость, образование конденсата.

    1. Экструдированный пенополистирол – прочный и удобный материал, при необходимости элементов нужного размера легко разрезается ножом.

    Достоинства: очень низкая теплопроводность, водонепроницаемость, прочность на сжатие, удобство монтажа, отсутствие плесени и гниения, возможность эксплуатации от -50⸰С до +75⸰С.

    Недостатки: намного дороже пенопласта, восприимчивость к органическим растворителям, образование конденсата.

    1. Базальтовая (каменная) вата – минеральная вата, изготавливающаяся на базальтовой основе.

    Достоинства: противостояние образованию грибков, звукоизоляция, прочность к механическим воздействиям, огнеупорность, негорючесть.

    Недостатки: более высокая стоимость, по сравнению с аналогами.

    1. Эковата – утеплитель, выполненный на основе естественных материалов (волокна дерева и минералы). На сегодняшний день применяется довольно часто.

    Достоинства: звукоизоляция, экологичность, влагостойкость, доступная стоимость.

    Недостатки: во время эксплуатации повышается теплопроводность, необходимость специального оборудования для монтажа, возможность усадки.

    1. Изолон – современный утеплитель, изготавливаемый путем вспенивания полиэтилена. Является одним из самых востребованных.

    Достоинства: низкая теплопроводность, низкая паропроницаемость, высокая шумоизоляция, удобство резки и монтажа, экологичность, гибкость, небольшой вес.

    Недостатки: низкая прочность, необходимость устройства вентиляционного зазора.

    1. Пенофол – утеплитель, который отвечает многим требованиям, предъявляемым к качеству утеплителя и утепления различных помещений, а также конструкций и т.д.

    Достоинства: экологичность, высокая способность к отражению тепла, высокая шумоизоляция, влагонепроницаемость, негорючесть, удобство перевозки и монтажа, отражение воздействия радиации.

    Недостатки: малая жесткость, затрудненность крепления материала, в качестве теплоизоляции одного пенофола недостаточно.

    Заключение

    Рассмотренные достоинства и недостатки утеплителей позволят выбрать самый подходящий вариант уже на стадии проектирования. При этом учитывать все требования, предъявляемые к теплоизоляционному материалу, в первую очередь теплопроводность.

    Таблица теплопроводности строительных материалов. Характеристики и сравнение строительных материалов

    Строительство коттеджа или дачного дома – это сложный и трудоемкий процесс. И для того, чтобы будущее строение простояло не один десяток лет, нужно соблюдать все нормы и стандарты при его возведении. Поэтому каждый этап строительства требует точных расчетов и качественного выполнения необходимых работ.

    Одним из самых важных показателей при строительстве и отделке строения является теплопроводность строительных материалов. СНИП (строительные нормы и правила) дает полный спектр информации по данному вопросу. Ее необходимо знать, чтобы будущее здание было комфортным для проживания как в летний, так и в зимний период.

    Идеальный теплый дом

    От конструктивных особенностей строения и применяемых при его возведении материалов зависит комфорт и экономичность проживания в нем. Комфорт заключается в создании оптимального микроклимата внутри вне зависимости от внешних погодных условий и температуры окружающей среды. Если материалы подобраны правильно, а котельное оборудование и вентиляция установлены согласно нормам, то в таком доме будет комфортная прохладная температура летом и тепло зимой. К тому же если все материалы, используемые при строительстве, обладают хорошими теплоизоляционными свойствами, то расходы на энергоносители при отоплении помещений будут минимальны.

    Понятие теплопроводности

    Теплопроводность – это передача тепловой энергии между непосредственно соприкасающимися телами или средами. Простыми словами теплопроводность – это способность материала проводить температуру. То есть, попадая в какую-то среду с отличающейся температурой, материал начинает принимать температуру этой среды.

    Этот процесс имеет большое значение и в строительстве. Так, в доме с помощью отопительного оборудования поддерживается оптимальная температура (20-25°C). Если температура на улице будет ниже, то когда отключается отопление, все тепло из дома через некоторое время выйдет на улицу, и температура понизится. Летом происходит обратная ситуация. Чтобы сделать температуру в доме ниже уличной, приходится использовать кондиционер.

    Коэффициент теплопроводности

    Потеря тепла в доме неизбежна. Она происходит постоянно, когда температура снаружи меньше, чем в помещении. А вот ее интенсивность – это переменная величина. Она зависит от множества факторов, главными среди которых являются:

    • Площадь поверхностей, участвующих в теплообмене (крыша, стены, перекрытия, пол).
    • Показатель теплопроводности строительных материалов и отдельных элементов здания (окна, двери).
    • Разница между температурами на улице и внутри дома.
    • И другие.

    Для количественной характеристики теплопроводности строительных материалов используют специальный коэффициент. Используя этот показатель, можно довольно просто рассчитать необходимую теплоизоляцию для всех частей дома (стены, крыша, перекрытия, пол). Чем выше коэффициент теплопроводности строительных материалов, тем больше интенсивность потери тепла. Таким образом, для постройки теплого дома лучше применять материалы с более низким показателем этой величины.

    Коэффициент теплопроводности строительных материалов, как и любых других веществ (жидких, твердых или газообразных), обозначается греческой буквой λ. Единицей его измерения является Вт/(м*°C). При этом расчет ведется на один квадратный метр стены толщиной в один метр. Разница температур здесь берется 1°. Практически в любом строительном справочнике имеется таблица теплопроводности строительных материалов, в которой можно посмотреть значение этого коэффициента для различных блоков, кирпичей, бетонных смесей, пород дерева и других материалов.

    Определение потерь тепла

    Потери тепла в любом здании всегда есть, но в зависимости от материала они могут изменять свое значение. В среднем потеря тепла происходит через:

    • Крышу (от 15 % до 25 %).
    • Стены (от 15 % до 35 %).
    • Окна (от 5 % до 15 %).
    • Дверь (от 5 % до 20 %).
    • Пол (от 10 % до 20 %).

    Для определения потерь тепла применяют специальный тепловизор, который определяет наиболее проблемные места. Они выделяются на нем красным цветом. Меньшая потеря тепла происходит в желтых зонах, далее – в зеленых. Зоны с наименьшей потерей тепла выделяются синим цветом. А определение теплопроводности строительных материалов должно проводиться в специальных лабораториях, о чем должен свидетельствовать сертификат качества, прилагаемый к продукции.

    Пример расчета потерь тепла

    Если взять, к примеру, стену из материала с коэффициентом теплопроводности 1, то при разности температур с двух сторон этой стены в 1°, потери тепла составят 1 Вт. Если же толщину стены взять не 1 метр, а 10 см, то потери составят уже 10 Вт. В случае, если разность температур будет 10°, то тепловые потери также составят 10 Вт.

    Рассмотрим теперь на конкретном примере расчет потери тепла целого здания. Высоту его возьмем 6 метров (8 с коньком), ширину – 10 метров, а длину – 15 метров. Для простоты расчетов берем 10 окон площадью 1 м 2 . Температуру внутри помещения будем считать равную 25°C, а на улице -15°C. Вычисляем площадь всех поверхностей, через которые происходит потеря тепла:

    • Окна – 10 м 2 .
    • Пол – 150 м 2 .
    • Стены – 300 м 2 .
    • Крыша (со скатами по длинной стороне) – 160 м 2 .

    Формула теплопроводности строительных материалов позволяет вычислить коэффициенты для всех частей здания. Но проще использовать уже готовые данные из справочника. Там есть таблица теплопроводности строительных материалов. Рассмотрим каждый элемент по отдельности и определим его тепловое сопротивление. Оно рассчитывается по формуле R = d/λ, где d – толщина материала, а λ – коэффициент его теплопроводности.

    Пол – 10 см бетона (R=0,058 (м 2 *°C)/Вт) и 10 см минеральной ваты (R=2,8 (м 2 *°C)/Вт). Теперь складываем эти два показателя. Таким образом, тепловое сопротивление пола равняется 2,858 (м 2 *°C)/Вт.

    Аналогично считаются стены, окна и кровля. Материал – ячеистый бетон (газобетон), толщина 30 см. В таком случае R=3,75 (м 2 *°C)/Вт. Тепловое сопротивление пластового окна – 0,4 (м 2 *°C)/Вт.

    Кровлю будем считать из минеральной ваты толщиной в 10 см и профлиста. Так как металл имеет высокий коэффициент теплопроводности, то профлист в расчет не берем. Тогда R крыши составит 2,8 (м 2 *°C)/Вт.

    Следующая формула позволяет выяснить потери тепловой энергии.

    Q = S * T / R, где S – площадь поверхности, T – разница температур снаружи и внутри (40°C). Рассчитаем потери тепла для каждого элемента:

    • Для крыши: Q = 160*40/2,8=2,3 кВт.
    • Для стен: Q = 300*40/3,75=3,2 кВт.
    • Для окон: Q = 10*40/0,4=1 кВт.
    • Для пола: Q = 150*40/2,858=2,1 кВт.

    Далее все эти показатели суммируются. Таким образом, для данного коттеджа тепловые потери составят 8,6 кВт. А для поддержания оптимальной температуры потребуется котельное оборудование мощностью не менее 10 кВт.

    Материалы для внешних стен

    На сегодняшний день существует множество стеновых строительных материалов. Но наибольшей популярностью в частном домостроении по-прежнему пользуются строительные блоки, кирпичи и дерево. Основные отличия – это плотность и теплопроводность строительных материалов. Сравнение дает возможность выбрать золотую середину в соотношении плотность/теплопроводность. Чем выше плотность материала, тем выше его несущая способность, а следовательно, и прочность конструкции в целом. Но при этом ниже его тепловое сопротивление, а как следствие, расходы на энергоносители выше. С другой стороны, чем выше тепловое сопротивление, тем ниже плотность материала. Меньшая плотность, как правило, подразумевает наличие пористой структуры.

    Чтобы взвесить все за и против, необходимо знать плотность материала и его коэффициент теплопроводности. Следующая таблица теплопроводности строительных материалов для стен дает значение этого коэффициента и его плотность.

    Таблицы теплопроводности разных строительных материалов

    автор Сергей Соболев 2.1k Просмотров Мнений

    Прочный и теплый дом – это основное требование, которое предъявляется проектировщикам и строителям. Поэтому еще на стадии проектирования зданий в конструкцию закладываются две разновидности стройматериалов: конструкционные и теплоизоляционные. Первые обладают повышенной прочностью, но большой теплопроводностью, и именно их чаще всего и используют для возведения стен, перекрытий, оснований и фундаментов. Вторые – это материалы с низкой теплопроводностью. Их основное назначение – закрыть собой конструкционные материалы, чтобы понизить их показатель тепловой проводимости. Поэтому для облегчения расчетов и выбора используется таблица теплопроводности строительных материалов.

    Читайте в статье:

    Читайте также:  Адгезия: что это такое, разновидности, способы повышения

    Что такое теплопроводность

    Законы физики определяют один постулат, который гласит, что тепловая энергия стремится от среды с высокой температурой к среде с низкой температурой. При этом, проходя через строительный материал, тепловая энергия затрачивает какое-то время. Переход не состоится лишь в том случае, если температура на разных сторонах от стройматериала одинаковая.

    То есть, получается так, что процесс перехода тепловой энергии, к примеру, через стену, это время проникновения тепла. И чем больше времени на это затрачивается, тем ниже теплопроводность стены. Вот такое соотношение. К примеру, теплопроводность различных материалов:

    • бетон –1,51 Вт/м×К;
    • кирпич – 0,56;
    • древесина – 0,09-0,1;
    • песок – 0,35;
    • керамзит – 0,1;
    • сталь – 58.

    Чтобы было понятно, о чем идет речь, надо обозначить, что бетонная конструкции не будет ни под каким предлогом пропускать через себя тепловую энергию, если ее толщина будет в пределах 6 м. Понятно, что это просто невозможно в домостроении. А значит, придется для снижения теплопроводности использовать другие материалы, у которых показатель ниже. И ими облицовывать бетонное сооружение.

    Что такое коэффициент теплопроводности

    Коэффициент теплоотдачи или теплопроводности материалов, который также обозначен в таблицах, это характеристика тепловой проводимости. Он обозначает количество тепловой энергии, проходящий через толщу стройматериала за определенный промежуток времени.

    В принципе, коэффициент обозначает именно количественный показатель. И чем он меньше, тем теплопроводность материала лучше. Из сравнения выше видно, что стальные профили и конструкции обладают самым высоким коэффициентом. А значит, они практически не держат тепло. Из строительных материалов,сдерживающих тепло, которые используются для сооружения несущих конструкций, это древесина.

    Но надо обозначить и другой момент. К примеру, все та же сталь. Этот прочный материал используют для отведения тепла, где есть необходимость сделать быстрый перенос. К примеру, радиаторы отопления. То есть, высокий показатель теплопроводности – это не всегда плохо.

    Что влияет на теплопроводность строительных материалов

    Есть несколько параметров, которые сильно влияют на тепловую проводимость.

    1. Структура самого материала.
    2. Его плотность и влажность.

    Что касается структуры, то здесь огромное разнообразие: однородная плотная, волокнистая, пористая, конгломератная (бетон), рыхлозернистая и прочее. Так вот надо обозначить, что чем неоднороднее структура у материала, тем ниже у него теплопроводность. Все дело в том, что проходить сквозь вещество, в котором большой объем занимают поры разного размера, тем сложнее энергии через нее перемещаться. А ведь в данном случае тепловая энергия – это излучение. То есть, оно не проходит равномерно, а начинает изменять направления, теряя силу внутри материала.

    Теперь о плотности. Этот параметр обозначает, на каком расстоянии между собой располагаются частички материала внутри его самого. Исходя из предыдущей позиции, можно сделать вывод: чем меньше это расстояние, а значит, больше плотность, тем тепловая проводимость выше. И наоборот. Тот же пористый материал имеет плотность меньше, чем однородный.

    У влажной стены тепловая проводимость выше

    Влажность – это вода, которая имеет плотную структуру. И ее теплопроводность равна 0,6 Вт/м*К. Достаточно высокий показатель, сравнимый с коэффициентом теплопроводности кирпича. Поэтому когда она начинает проникать в структуру материала и заполнять собой поры, это увеличение тепловой проводимости.

    Коэффициент теплопроводности строительных материалов: как применяется на практике и таблица

    Практические значение коэффициента – это правильно проведенный расчет толщины несущих конструкций с учетом используемых утеплителей. Необходимо отметить, что возводимое здание – это несколько ограждающих конструкций, через которые происходит утечка тепла. И у каждой их них свой процент теплопотерь.

    • через стены уходит до 30% тепловой энергии общего расхода.
    • Через полы – 10%.
    • Через окна и двери – 20%.
    • Через крышу – 30%.

    Теплопотери дома

    То есть, получается так, что если неправильно рассчитать теплопроводность всех ограждений, то проживающим в таком доме людям придется довольствоваться лишь 10% тепловой энергии, которое выделяет отопительная система. 90% – это, как говорят, выброшенные на ветер деньги.

    Поэтому при строительстве домов стараются использовать разные строительные материалы, дополняющие друг друга по теплопроводности. При этом очень важно соотносить толщину каждого элемента в общей строительной конструкции. В этом плане идеальным домом можно считать каркасный. У него деревянная основа, уже можно говорить о теплом доме, и утеплители, которые закладываются между элементами каркасной постройки. Конечно, с учетом средней температуры региона придется точно рассчитать толщину стен и других ограждающих элементов. Но, как показывает практика, вносимые изменения не столь значительны, чтобы можно было бы говорить о больших капитальных вложениях.

    Устройство каркасного дома в плане его утепления

    Рассмотрим несколько часто используемых строительных материалов и проведем сравнение их теплопроводность по толщине.

    Теплопроводность кирпича: таблица по разновидностям

    ФотоВид кирпичаТеплопроводность, Вт/м*К
    Керамический полнотелый0,5-0,8
    Керамический щелевой0,34-0,43
    Поризованный0,22
    Силикатный полнотелый0,7-0,8
    Силикатный щелевой0,4
    Клинкерный0,8-0,9

    Тепловая проводимость кирпичной кладки при разнице температуры в 10°С

    Теплопроводность дерева: таблица по породам

    Порода дереваБерезаДуб поперек волоконДуб вдоль волоконЕльКедрКленЛиственница
    Теплопроводность, Вт/м С0,150,20,40,110,0950,190,13
    Порода дереваЛипаПихтаПробковое деревоСосна поперек волоконСосна вдоль волоконТополь
    Теплопроводность, Вт/м С0,150,150,0450,150,40,17

    Коэффициент теплопроводности пробкового дерева самый низкий из всех пород древесины. Именно пробка часто используется в качестве теплоизоляционного материала при проведении утеплительных мероприятий.

    У древесины теплопроводность ниже, чем у бетона и кирпича

    Теплопроводность металлов: таблица

    Данный показатель у металлов изменяется с изменением температуры, в которой они применяются. И здесь соотношение такое – чем выше температура, тем ниже коэффициент. В таблице покажем металлы, которые используются в строительной сфере.

    Вид металлаСтальЧугунАлюминийМедь
    Теплопроводность, Вт/м С4762236328

    Теперь, что касается соотношения с температурой.

    • У алюминия при температуре -100°С теплопроводность составляет 245 Вт/м*К. А при температуре 0°С – 238. При +100°С – 230, при +700°С – 0,9.
    • У меди: при -100°С –405, при 0°С – 385, при +100°С – 380, а при +700°С – 350.

    Тепловая проводимость у меди выше, чем у стали почти в семь раз

    Таблица теплопроводности других материалов

    В основном нас будет интересовать таблица теплопроводности изоляционных материалов. Необходимо отметить, что если у металлов данный параметр зависит от температуры, то у утеплителей от их плотности. Поэтому в таблице будут расставлены показатели с учетом плотности материалом.

    Теплоизоляционный материалПлотность, кг/м³Теплопроводность, Вт/м*К
    Минеральная вата (базальтовая)500,048
    1000,056
    2000,07
    Стекловата1550,041
    2000,044
    Пенополистирол400,038
    1000,041
    1500,05
    Пенополистирол экструдированный330,031
    Пенополиуретан320,023
    400,029
    600,035
    800,041

    И таблица теплоизоляционных свойств строительных материалов. Основные из них уже рассмотрены, обозначим те, которые в таблицы не вошли, и которые относятся к категории часто используемых.

    Строительный материалПлотность, кг/м³Теплопроводность, Вт/м*К
    Бетон24001,51
    Железобетон25001,69
    Керамзитобетон5000,14
    Керамзитобетон18000,66
    Пенобетон3000,08
    Пеностекло4000,11

    Коэффициент теплопроводности воздушной прослойки

    Всем известно, что воздух, если его оставить внутри строительного материала или между слоями стройматериалов, это великолепный утеплитель. Почему так происходит, ведь сам воздух, как таковой, не может сдерживать тепло. Для этого надо рассмотреть саму воздушную прослойку, огражденную двумя слоями стройматериалов. Один из них соприкасается с зоной положительных температур, другой с зоной отрицательный.

    Воздушная прослойка между внешней облицовкой и теплоизоляционным слоем

    Тепловая энергия движется от плюса к минусу, и встречает на своем пути слой воздуха. Что происходит внутри:

    1. Конвекция теплого воздуха внутри прослойки.
    2. Тепловое излучение от материала с плюсовой температурой.

    Поэтому сам тепловой поток – это сумма двух факторов с добавлением теплопроводности первого материала. Необходимо сразу отметить, что излучение занимает большую часть теплового потока. Сегодня все расчеты теплосопротивления стен и других несущих ограждающих конструкций проводят на онлайн-калькуляторах. Что касается воздушной прослойки, то такие расчеты провести сложно, поэтому берутся значения, которые в 50-х годах прошлого столетия были получены лабораторными исследованиями.

    В них четко оговаривается, что если разница температур стен, ограниченных воздухом, составляет 5°С, то излучение возрастает с 60% до 80%, если увеличить толщину прослойки с 10 до 200 мм. То есть, общий объем теплового потока остается тот же, излучение вырастает, а значит, теплопроводность стены падает. И разница значительная: с 38% до 2%. Правда, возрастает конвекция с 2% до 28%. Но так как пространство замкнутое, то движение воздуха внутри него никак не действует на внешние факторы.

    Расчет толщины стены по теплопроводности вручную по формулам или калькулятором

    Рассчитать толщину стены не так просто. Для этого нужно сложить все коэффициенты теплопроводности материалов, которые были использованы для сооружения стены. К примеру, кирпич, штукатурный раствор снаружи, плюс наружная облицовка, если такая будет использоваться. Внутренние выравнивающие материалы, это может быть все та же штукатурка или гипсокартонные листы, другие плитные или панельные покрытия. Если есть воздушная прослойка, то учитывают и ее.

    Толщина стен из разных стройматериалов с одинаковым тепловым сопротивлением

    Есть так называемая удельная теплопроводность по регионам, которую берут за основу. Так вот расчетная величина не должна быть больше удельной. В таблице ниже по городам дана удельная тепловая проводимость.

    РегионМоскваСанкт-ПетербургРостовСочи
    Теплопроводность3,143,182,752,1

    То есть, чем южнее, тем общая теплопроводность материалов должна быть меньше. Соответственно, можно уменьшать и толщину стены. Что касается онлайн-калькулятора, то предлагаем ниже посмотреть видео, на котором разбирается, как правильно пользоваться таким расчетным сервисом.

    Если у вас возникли вопросы, на которые, как вам показалось, вы не нашли ответы в этой статье, пишите их в комментариях. Наша редакция постарается на них ответить.

    Добавить комментарий